
Sensor Fusion and Tracking Toolbox™
Getting Started Guide

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Sensor Fusion and Tracking Toolbox™ Getting Started Guide
© COPYRIGHT 2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2018 Online only New for Version 1.0 (Release 2018b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Introduction
1

Sensor Fusion and Tracking Toolbox Product Description 1-2
Key Features . 1-2

Inertial Sensor Models
2

Model IMU, GPS, and INS/GPS . 2-2
Inertial Measurement Unit . 2-2
Global Positioning System . 2-5
Inertial Navigation System and Global Positioning System . . . 2-9

Orientation
3

Determine Orientation Using Inertial Sensors 3-2

Spatial Representation
4

Orientation, Position, and Coordinate Systems 4-2
Orientation . 4-2
Frame Rotation . 4-3
Position . 4-6

iii

Contents

Pose . 4-7
Trajectory . 4-8

Pose
5

Determine Pose Using Inertial Sensors and GPS 5-2
Fuse Inertial Sensor and GPS data . 5-2

Tracking Scenario
6

Tracking Simulation Overview . 6-2

Creating Tracking Scenario . 6-4

Radar Detections
7

Simulate Radar Detections . 7-2
Create Radar Sensor . 7-2
Detector Input . 7-16
Radar Sensor Coordinate Systems . 7-18
INS . 7-20
Detections . 7-20

Multi-Object Tracking
8

Tracking and Tracking Filters . 8-2
Multi-Object Tracking . 8-2

iv Contents

Multi-Object Tracker Properties . 8-3

v

Introduction

1

Sensor Fusion and Tracking Toolbox Product Description
Design and simulate multisensor tracking and navigation systems

Sensor Fusion and Tracking Toolbox includes algorithms and tools for the design,
simulation, and analysis of systems that fuse data from multiple sensors to maintain
position, orientation, and situational awareness. Reference examples provide a starting
point for implementing components of airborne, ground-based, shipborne, and
underwater surveillance, navigation, and autonomous systems.

The toolbox includes multi-object trackers, sensor fusion filters, motion and sensor
models, and data association algorithms that let you evaluate fusion architectures using
real and synthetic data. With Sensor Fusion and Tracking Toolbox you can import and
define scenarios and trajectories, stream signals, and generate synthetic data for active
and passive sensors, including RF, acoustic, EO/IR, and GPS/IMU sensors. You can also
evaluate system accuracy and performance with standard benchmarks, metrics, and
animated plots.

For simulation acceleration or desktop prototyping, the toolbox supports C code
generation.

Key Features
• Algorithms for multi-object tracking, sensor fusion, and inertial sensing
• Active and passive sensor models, including RF, acoustic, EO/IR, and GPS/IMU

sensors, for testing fusion algorithms
• Reference examples for airborne, ground-based, shipborne, and underwater

surveillance, navigation, and autonomous systems
• Scenario and trajectory import and generation
• C code generation for simulation acceleration or desktop prototyping (with MATLAB®

Coder™)

1 Introduction

1-2

Inertial Sensor Models

2

Model IMU, GPS, and INS/GPS
Sensor Fusion and Tracking Toolbox enables you to model inertial measurement units
(IMU), Global Positioning Systems (GPS), and inertial navigation systems (INS). You can
model specific hardware by setting properties of your models to values from hardware
datasheets. You can tune environmental and noise properties to mimic real-world
environments. You can use these models to test and validate your fusion algorithms or as
placeholders while developing larger applications.

This tutorial provides an overview of inertial sensor and GPS models in Sensor Fusion and
Tracking Toolbox.

To learn how to generate the ground-truth motion that drives the sensor models, see
waypointTrajectory and kinematicTrajectory. For a tutorial on fusing inertial
sensor data, see “Determine Orientation Using Inertial Sensors” on page 3-2.

Inertial Measurement Unit
An IMU is an electronic device mounted on a platform. The IMU consists of individual
sensors that report various information about the platform's motion. IMUs combine
multiple sensors, which can include accelerometers, gyroscopes, and magnetometers.

2 Inertial Sensor Models

2-2

With this toolbox, measurements returned from an IMU model use the following unit and
coordinate conventions.

Output Description Units Coordinate System
Acceleration Current

accelerometer
reading

m/s2 Sensor Body

Angular velocity Current gyroscope
reading

rad/s Sensor Body

Magnetic field Current
magnetometer
reading

μT Sensor Body

Usually, the data returned by IMUs is fused together and interpreted as roll, pitch, and
yaw of the platform. Real-world IMU sensors can have different axes for each of the
individual sensors. The models provided by Sensor Fusion and Tracking Toolbox assume
that the individual sensor axes are aligned.

 Model IMU, GPS, and INS/GPS

2-3

To create an IMU sensor model, use the imuSensor System object™.

IMU = imuSensor

IMU =

 imuSensor with properties:

 IMUType: 'accel-gyro'
 SampleRate: 100
 Temperature: 25
 Accelerometer: [1×1 accelparams]
 Gyroscope: [1×1 gyroparams]
 RandomStream: 'Global stream'

The default IMU model contains an ideal accelerometer and an ideal gyroscope. The
accelparams and gyroparams objects define the accelerometer and gyroscope
configuration. You can set the properties of these objects to mimic specific hardware and
environments. For more information on IMU parameter objects, see accelparams,
gyroparams, and magparams.

2 Inertial Sensor Models

2-4

To model receiving IMU sensor data, call the IMU model with the ground-truth
acceleration and angular velocity of the platform:
trueAcceleration = [1 0 0];
trueAngularVelocity = [1 0 0];
[accelerometerReadings,gyroscopeReadings] = IMU(trueAcceleration,trueAngularVelocity)

accelerometerReadings =

 -1.0000 0 9.8100

gyroscopeReadings =

 1 0 0

You can generate the ground-truth trajectories that you input to the IMU model using
kinematicTrajectory and waypointTrajectory.

Global Positioning System
A global positioning system (GPS) provides 3-D position information for platforms
(receivers) on the surface of the Earth.

 Model IMU, GPS, and INS/GPS

2-5

GPS consists of a constellation of satellites that continuously orbit the earth. The
satellites maintain a configuration such that a platform is always within view of at least
four satellites. By measuring the flight time of signals from the satellites to the platform,
the position of the platform can be trilaterated. Satellites timestamp a broadcast signal,
which is compared to the platform's clock upon receipt. Three satellites are required to
trilaterate a position in three dimensions. The fourth satellite is required to correct for
clock synchronization errors between the platform and satellites.

2 Inertial Sensor Models

2-6

The GPS simulation provided by Sensor Fusion and Tracking Toolbox models the platform
(receiver) data that has already been processed and interpreted as altitude, latitude,
longitude, velocity, groundspeed, and course.

Measurements returned from the GPS model use the following unit and coordinate
conventions.

Output Description Units Coordinate System
LLA Current global

position reading in
geodetic coordinates,
based on
wgs84Ellipsoid Earth
model

degrees (latitude),
degrees (longitude),
meters (altitude)

LLA

Velocity Current velocity
reading from GPS

m/s local NED

Groundspeed Current groundspeed
reading from GPS

m/s local NED

Course Current course
reading from GPS

degrees local NED

The GPS model enables you to set high-level accuracy and noise parameters, as well as
the receiver update rate and a reference location.

To create a GPS model, use the gpsSensor System object.

GPS = gpsSensor

 Model IMU, GPS, and INS/GPS

2-7

GPS =

 gpsSensor with properties:

 UpdateRate: 1 Hz
 ReferenceLocation: [0 0 0] [deg deg m]
 HorizontalPositionAccuracy: 1.6 m
 VerticalPositionAccuracy: 3 m
 VelocityAccuracy: 0.1 m/s
 RandomStream: 'Global stream'
 DecayFactor: 0.999

To model receiving GPS sensor data, call the GPS model with the ground-truth position
and velocity of the platform:

truePosition = [1 0 0];
trueVelocity = [1 0 0];
[LLA,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)

LLA =

 0.0000 0.0000 0.3031

velocity =

 1.0919 -0.0008 -0.1308

groundspeed =

 1.0919

course =

 359.9566

You can generate the ground-truth trajectories that you input to the GPS model using
kinematicTrajectory and waypointTrajectory.

2 Inertial Sensor Models

2-8

Inertial Navigation System and Global Positioning System
An inertial navigation system (INS) uses inertial sensors like those found on an IMU:
accelerometers, gyroscopes, and magnetometers. An INS fuses the inertial sensor data to
calculate position, orientation, and velocity of a platform. An INS/GPS uses GPS data to
correct the INS. Typically, the INS and GPS readings are fused with an extended Kalman
filter, where the INS readings are used in the prediction step, and the GPS readings are
used in the update step. A common use for INS/GPS is dead-reckoning when the GPS
signal is unreliable.

"INS/GPS" refers to the entire system, including the filtering. The INS/GPS simulation
provided by Sensor Fusion and Tracking Toolbox models an INS/GPS and returns the
position, velocity, and orientation reported by the inertial sensors and GPS receiver based
on a ground-truth motion.

Measurements returned from the INS/GPS use the following unit and coordinate
conventions.

Output Description Units Coordinate System
Position Current position

reading from the
INS/GPS

meters local NED

Velocity Current velocity
reading from the
INS/GPS

m/s local NED

Orientation Current orientation
reading from the
INS/GPS

quaternion or
rotation matrix

N/A

To create a INS/GPS model, use the insSensor System object. You can model a real-
world INS/GPS system by tuning the accuracy of your fused data: roll, pitch, yaw,
position, and velocity.

INS = insSensor

INS =

 insSensor with properties:

 RollAccuracy: 0.2 deg

 Model IMU, GPS, and INS/GPS

2-9

 PitchAccuracy: 0.2 deg
 YawAccuracy: 1 deg
 PositionAccuracy: 1 m
 VelocityAccuracy: 0.05 m/s
 RandomStream: 'Global stream'

To model receiving INS/GPS sensor data, call the INS/GPS model with the ground-truth
position and velocity and orientation of the platform:

trueMotion = struct(...
 'Position',[0 0 0], ...
 'Velocity',[0 0 0], ...
 'Orientation',quaternion(1,0,0,0));
measurement = INS(trueMotion)

measurement =

 struct with fields:

 Orientation: [1×1 quaternion]
 Position: [0.2939 -0.7873 0.8884]
 Velocity: [-0.0574 -0.0534 -0.0405]

See Also
gpsSensor | imuSensor | insSensor

More About
• “Introduction to Simulating IMU Measurements”
• “Inertial Sensor Noise Analysis Using Allan Variance”

External Websites
• https://www.gps.gov/systems/gps/

2 Inertial Sensor Models

2-10

https://www.gps.gov/systems/gps/

Orientation

3

Determine Orientation Using Inertial Sensors
Sensor Fusion and Tracking Toolbox enables you to fuse data read from an inertial
measurement unit (IMU) to estimate orientation and angular velocity:

• ecompass –– Fuse accelerometer and magnetometer readings
• imufilter –– Fuse accelerometer and gyroscope readings
• ahrsfilter –– Fuse accelerometer, gyroscope, and magnetometer readings

More sensors on an IMU result in a more robust orientation estimation. The sensor data
can be cross-validated, and the information the sensors convey is orthogonal.

This tutorial provides an overview of inertial sensor fusion for IMUs in Sensor Fusion and
Tracking Toolbox.

To learn how to model inertial sensors and GPS, see “Model IMU, GPS, and INS/GPS” on
page 2-2. To learn how to generate the ground-truth motion that drives sensor models,
see waypointTrajectory and kinematicTrajectory.

You can also fuse IMU readings with GPS readings to estimate pose. See “Determine Pose
Using Inertial Sensors and GPS” on page 5-2 for an overview.

Estimate Orientation Through Inertial Sensor
Fusion
This example shows how to use 6-axis and 9-axis fusion algorithms to compute
orientation. Sensor Fusion and Tracking Toolbox™ includes several algorithms to
compute orientation from inertial measurement units (IMUs) and magnetic-angular rate-
gravity (MARG) units. This example covers the basics of orientation and how to use these
algorithms.

3 Orientation

3-2

Orientation

An object's orientation describes its rotation relative to some coordinate system,
sometimes called a parent coordinate system, in three-dimensions.

Sensor Fusion and Tracking Toolbox uses North-East-Down (NED) as a fixed, parent
coordinate system. NED is sometimes referred to as the global coordinate system or
reference frame. In the NED reference frame, the X-axis points north, the Y-axis points
east, and the Z-axis points downward. The X-Y plane of NED is considered to be the local
tangent plane of the Earth. Depending on the algorithm, North may be either Magnetic
North or True North. The algorithms in this example use Magnetic North.

An object can be thought of as having its own coordinate system, often called the local or
child coordinate system. This child coordinate system rotates with the object relative to
the parent coordinate system. If there is no translation, the origins of both coordinate
systems overlap.

The orientation quantity computed in Sensor Fusion and Tracking Toolbox is a rotation
that takes quantities from the parent reference frame to the child reference frame. The
rotation is represented by a quaternion or rotation matrix.

Types of Sensors

For orientation estimation, three types of sensors are commonly used: accelerometers,
gyroscopes and magnetometers. Accelerometers measure proper acceleration.
Gyroscopes measure angular velocity. Magnetometers measure the local magnetic field.
Different algorithms are used to fuse different combinations of sensors to estimate
orientation.

Sensor Data

Through most of this example the same set of sensor data is used. Accelerometer,
gyroscope and magnetometer sensor data was recorded while a device moved in three
different directions: first around its local Y-axis, then around its Z-axis, and finally around
its X-axis. The device's X-axis was generally pointed southward for the duration of the
experiment.

ld = load('rpy_9axis.mat');

acc = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
mag = ld.sensorData.MagneticField;

 Estimate Orientation Through Inertial Sensor Fusion

3-3

viewer = fusiondemo.OrientationViewer;

Accelerometer-Magnetometer Fusion

The ecompass function fuses accelerometer and magnetometer data. This is a
memoryless algorithm that requires no parameter tuning, but is highly susceptible to
sensor noise.

qe = ecompass(acc, mag);
for ii=1:size(acc,1)
 viewer(qe(ii));
 pause(0.01);
end

3 Orientation

3-4

Note that the ecompass algorithm correctly finds the location of north. However, because
the function is memoryless the estimated motion is not smooth. It is dramatically affected
by the noise in the accelerometer and magnetometer. Some of the techniques presented
in the Lowpass Filter Orientation Using Quaternion SLERP could be used to smooth the
motion.

Accelerometer-Gyroscope Fusion

The imufilter System object fuses accelerometer and gyroscope data using an internal
error-state Kalman filter. The filter is capable of removing the gyroscope's bias noise,
which drifts over time.

ifilt = imufilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
 qimu = ifilt(acc(ii,:), gyro(ii,:));
 viewer(qimu);
 pause(0.01);
end

 Estimate Orientation Through Inertial Sensor Fusion

3-5

matlab:web(fullfile(docroot,'fusion','examples','LowpassSLERPExample.html'))

Although the imufilter algorithm produces a significantly smoother estimate of the
motion, as compared to the ecompass, it does not correctly estimate the direction of
North. The imufilter does not process magnetometer data so it simply assumes the
device's X-axis is initially pointing northward. The motion estimate given by imufilter is
relative to the initial estimated orientation.

Accelerometer-Gyroscope-Magnetometer Fusion

An attitude and heading reference system (AHRS) consists of a 9-axis system that uses an
accelerometer, gyroscope and magnetometer to compute orientation. The ahrsfilter
System object combines the best of the previous algorithms to produce a smoothly
changing estimate of the device orientation, while correctly estimating the direction of

3 Orientation

3-6

North. This algorithm also uses an error-state Kalman filter. In addition to gyroscope bias
removal, the ahrsfilter has some ability to detect and reject mild magnetic jamming.

ifilt = ahrsfilter('SampleRate', ld.Fs);
for ii=1:size(acc,1)
 qahrs = ifilt(acc(ii,:), gyro(ii,:), mag(ii,:));
 viewer(qahrs);
 pause(0.01);
end

Tuning Filter Parameters

Tuning the parameters of the ahrsfilter and imufilter to match specific hardware
sensors can improve performance. It is important to also take into account the

 Estimate Orientation Through Inertial Sensor Fusion

3-7

environment of the sensor. The imufilter parameters are a subset of the ahrsfilter
parameters. The AccelerometerNoise, GyroscopeNoise, MagnetometerNoise, and
GyroscopeDriftNoise are measurement noises. The sensors' datasheets help
determine those values.

The LinearAccelerationNoise and LinearAccelerationDecayFactor govern the
filter's response to linear (translational) acceleration. Shaking a device is a simple
example of adding linear acceleration.

Consider how an imufilter with a LinearAccelerationNoise of 9e-3
responds to a shaking trajectory, compared to one with a LinearAccelerationNoise of
9e-4 .

ld = load('shakingDevice.mat');
accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
viewer = fusiondemo.OrientationViewer;

highVarFilt = imufilter('SampleRate', ld.Fs, ...
 'LinearAccelerationNoise', 0.009);
qHighLANoise = highVarFilt(accel, gyro);

lowVarFilt = imufilter('SampleRate', ld.Fs, ...
 'LinearAccelerationNoise', 0.0009);
qLowLANoise = lowVarFilt(accel, gyro);

One way to see the effect of the LinearAccelerationNoise is to look at the output
gravity vector. The gravity vector is simply the 3rd column of the orientation rotation
matrix.

rmatHigh = rotmat(qHighLANoise, 'frame');
rmatLow = rotmat(qLowLANoise, 'frame');

gravDistHigh = sqrt(sum((rmatHigh(:,3,:) - [0;0;1]).^2, 1));
gravDistLow = sqrt(sum((rmatLow(:,3,:) - [0;0;1]).^2, 1));

figure;
plot([squeeze(gravDistHigh), squeeze(gravDistLow)]);
title('Euclidean Distance to Gravity');
legend('LinearAccelerationNoise = 0.009', ...
 'LinearAccelerationNoise = 0.0009');

3 Orientation

3-8

The lowVarFilt has a low LinearAccelerationNoise so it expects to be in an
environment with low linear acceleration. Therefore, it is more susceptible to linear
acceleration, as illustrated by the large variations earlier in the plot. However, because it
expects to be in an environment with a low linear acceleration, higher trust is placed in
the accelerometer signal. As such, the orientation estimate converges quickly back to
vertical once the shaking has ended. The converse is true for highVarFilt. The filter is
less affected by shaking but the orientation estimate takes longer to converge to vertical
when the shaking has stopped.

The MagneticDisturbanceNoise property enables modeling magnetic disturbances
(non-geomagnetic noise sources) in much the same way LinearAccelerationNoise
models linear acceleration.

 Estimate Orientation Through Inertial Sensor Fusion

3-9

The two decay factor properties (MagneticDisturbanceDecayFactor and
LinearAccelerationDecayFactor) model the rate of variation of the noises. For
slowly varying noise sources, set these parameters to a value closer to 1. For quickly
varying, uncorrelated noises, set these parameters closer to 0. A lower
LinearAccelerationDecayFactor enables the orientation estimate to find "down"
more quickly. A lower MagneticDisturbanceDecayFactor enables the orientation
estimate to find North more quickly.

Very large, short magnetic disturbances are rejected almost entirely by the ahrsfilter.
Consider a pulse of [0 250 0] uT applied while recording from a stationary sensor. Ideally,
there should be no change in orientation estimate.

ld = load('magJamming.mat');
hpulse = ahrsfilter('SampleRate', ld.Fs);
len = 1:10000;
qpulse = hpulse(ld.sensorData.Acceleration(len,:), ...
 ld.sensorData.AngularVelocity(len,:), ...
 ld.sensorData.MagneticField(len,:));

figure;
timevec = 0:ld.Fs:(ld.Fs*numel(qpulse) - 1);
plot(timevec, eulerd(qpulse, 'ZYX', 'frame'));
title(['Stationary Trajectory Orientation Euler Angles' newline ...
 'Magnetic Jamming Response']);
legend('Z-rotation', 'Y-rotation', 'X-rotation');
ylabel('Degrees');
xlabel('Seconds');

3 Orientation

3-10

Note that the filter almost totally rejects this magnetic pulse as interference. Any
magnetic field strength greater than four times the ExpectedMagneticFieldStrength
is considered a jamming source and the magnetometer signal is ignored for those
samples.

 Estimate Orientation Through Inertial Sensor Fusion

3-11

Conclusion

The algorithms presented here, when properly tuned, enable estimation of orientation
and are robust against environmental noise sources. It is important to consider the
situations in which the sensors are used and tune the filters accordingly.

See Also
ahrsfilter | ecompass | imuSensor | imufilter | insfilter

More About
• “IMU and GPS Fusion for Inertial Navigation”
• “Estimate Position and Orientation of a Ground Vehicle”
• “Estimate Orientation and Height Using IMU, Magnetometer, and Altimeter”

3 Orientation

3-12

Spatial Representation

4

Orientation, Position, and Coordinate Systems
The Sensor Fusion and Tracking Toolbox enables you to track orientation, position, pose,
and trajectory of a platform. A platform refers generally to any object you want to track.

Orientation
Orientation is defined by angular displacement. Orientation can be described in terms of
point or frame rotation. In point rotation, the coordinate system is static and the point
moves. In frame rotation, the point is static and the coordinate system moves. For a given
axis and angle of rotation, point rotation and frame rotation define equivalent angular
displacement but in opposite directions.

Sensor Fusion and Tracking Toolbox defaults to frame rotation.

Orientation is defined as the frame rotation that takes the parent frame to the child
frame.

4 Spatial Representation

4-2

The choice of parent frame depends on the problem space. For example, manipulating
sensor frames is necessary to align various axes of independent sensors. Tracking the
body frame is often used for stabilization tasks. The ground reference frame is useful for
tracking multiple independent platforms and locating platforms in an absolute sense.

Frame Rotation
To relate one orientation to another you must rotate a frame. The table summarizes the
rotation conventions that Sensor Fusion and Tracking Toolbox uses. A three-axis
coordinate is always specified in order [x,y,z].

Variable Euler Angle Symbol Output Interval
(Degrees)

z Yaw ψ −180 ≤ ψ < 180
y Pitch θ −90 ≤ θ ≤ 90
x Roll ϕ −180 ≤ ϕ < 180

A positive rotation angle corresponds to a clockwise rotation about an axis when viewing
from the origin along the positive direction of the axis. The right-hand convention is
equivalent, where positive rotation is indicated by the direction in which the fingers on
your right hand curl when your thumb is pointing in the direction of the axis of rotation.

To define three-dimensional frame rotation, you must rotate sequentially about the axes.
Sensor Fusion and Tracking Toolbox uses intrinsic (carried frame) rotation, in which,

 Orientation, Position, and Coordinate Systems

4-3

after each rotation, the axis is updated before the next rotation. For example, to rotate an
axis using the ZYX convention:

1 Rotate the parent frame about the z-axis to yield a new set of axes, (x',y',z), where the
x- and y-axes have changed to x'- and y'-axes and the z-axis remains unchanged.

x

y

z

x

y

z

z

’

’

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ()
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

R y

2 Rotate the new set of axes about the y'-axis, yielding another new set of axes,
(x'',y',z').

x

y

z

x

y

z

y

’’

’

’

’

’

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ()
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

R q

3 Rotate this new set of axes about the x''-axis, arriving at the desired child frame,
(x'',y'',z'').

x

y

z

x

y

z

x

’’

’’

’’

’’

’

’

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ()
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

R f

4 Spatial Representation

4-4

This sequence of rotations follows the convention outlined in [1]. The rotation matrix
required to convert a vector in the parent frame to a vector in the child frame for a given
yaw, pitch, and roll is computed as:

R R R Ry q f y q f

y q y q q

y q f, ,

cos cos sin cos sin

cos sin sin() = () () () =

-

x y z
-- +

+

sin cos sin sin sin cos cos cos sin

cos sin cos sin co

y f y q f y f q f

y q f y ss sin sin sin cos cos cos cosf y q f y f q f+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

For features that support frame-based processing, Sensor Fusion and Tracking Toolbox
provides coordinates as an N-by-3 matrix, where N is the number of samples in time and
the three columns correspond to the x-, y-, and z-axes. The following calculation rotates a
parent frame to a child frame:

a a
child parent

R= () ¥ ()()y q f, ,
’
’

 Orientation, Position, and Coordinate Systems

4-5

Sensor Fusion and Tracking Toolbox enables efficient orientation computation using the
quaternion data type. To create a rotation matrix using quaternions, use the rotmat
function.

% Euler angles defining orientation of local axes
yaw = 20;
pitch = 5;
roll = 10;

% Create orientation matrix from Euler angles using quaternion class
q = quaternion([yaw pitch roll],'eulerd','zyx','frame');
myRotationMatrix = rotmat(q,'frame');

See “Rotations, Orientation and Quaternions” for more information on using quaternions
in Sensor Fusion and Tracking Toolbox.

Position
Position is defined as the translational distance from a parent frame origin to a child
frame origin. This toolbox uses the local north-east-down (NED) coordinate system as the
parent frame. In the NED coordinate system:

• The origin is arbitrarily fixed to a point on the surface of the Earth. This makes the
NED coordinate system local.

• The x-axis points toward the ellipsoid north.
• The y-axis points toward the ellipsoid east.
• The z-axis points downward along the ellipsoid normal (geodetic latitude, ρ).

4 Spatial Representation

4-6

Azimuth and Elevation

Given a vector in R3:

• Azimuth is defined as the angle from the x-axis to the orthogonal projection of the
vector onto the xy-plane. The angle is positive going from the x-axis toward the y-axis.
Azimuth is given in degrees in the range [−180, 180).

• Elevation is defined as the angle from the projection onto the xy-plane to the vector.
The angle is positive going from the xy-plane to the z-axis. Elevation is given in
degrees in the range [−90, 90].

Pose
To specify an object in 3-D space fully, you can combine position and orientation. Pose is
defined as the combination of position and orientation. Sensor Fusion and Tracking
Toolbox uses the following conventions when describing pose.

Property/Field Description Units Coordinate Frame
Position Current position of

platform in scenario
m NED

 Orientation, Position, and Coordinate Systems

4-7

Property/Field Description Units Coordinate Frame
Velocity Current velocity of

platform in scenario
m/s NED

Acceleration Current acceleration
of platform in
scenario

m/s2 NED

Orientation Current orientation
of platform in
scenario

unit quaternion /
orientation matrix

N/A

Angular velocity Current angular
velocity of platform
in scenario

rad/s NED

Trajectory
Trajectory defines how pose changes over time. To generate ground-truth trajectories in
Sensor Fusion and Tracking Toolbox, use kinematicTrajectory or
waypointTrajectory. To simulate tracking multiple platforms, use
trackingScenario.

See Also

More About
• “Rotations, Orientation and Quaternions”

References
[1] IEEE. Standard for Distributed Interactive Simulation – Application Protocols. IEEE

P1278.1/D16 Rev 18, May 2012.

4 Spatial Representation

4-8

Pose

5

Determine Pose Using Inertial Sensors and GPS
Sensor Fusion and Tracking Toolbox enables you to fuse data read from IMUs and GPS to
estimate pose. Use the insfilter function to create an INS/GPS fusion filter suited to
your system:

• MARGGPSFuser –– Estimate pose using a magnetometer, gyroscope, accelerometer,
and GPS data.

• NHConstrainedIMUGPSFuser –– Estimate pose using a gyroscope, accelerometer,
and GPS data. This algorithm uses nonholonomic constraints.

This tutorial provides an overview of inertial sensor fusion with GPS in Sensor Fusion and
Tracking Toolbox.

To learn how to model inertial sensors and GPS, see “Model IMU, GPS, and INS/GPS” on
page 2-2. To learn how to generate the ground-truth motion that drives sensor models,
see waypointTrajectory and kinematicTrajectory.

You can also fuse inertial sensor data without GPS to estimate orientation. See
“Determine Orientation Using Inertial Sensors” on page 3-2.

Fuse Inertial Sensor and GPS data
An inertial navigation system (INS) consists of sensors that detect translational motion
(accelerometers), rotation (gyroscopes), and in some systems magnetic fields
(magnetometers). By fusing the sensor data continuously, an INS can dead reckon a
platform's pose without external sensors. However, INS pose estimation generally
decreases in accuracy over time and needs to be corrected using an external reference,
such as GPS readings. Common configurations for INS/GPS fusion include MARG+GPS
for aerial vehicles and accelerometer+gyroscope+GPS with nonholonomic constraints for
ground vehicles.

5 Pose

5-2

Fuse MARG and GPS

A magnetic, angular rate, and gravity (MARG) system consists of a magnetometer,
gyroscope, and accelerometer. To fuse MARG and GPS data, create a MARGGPSFuser
object using the insfilter function:

FUSE = insfilter('NonholonomicHeading',false,'Magnetometer',true)

FUSE =

 MARGGPSFuser with properties:

 IMUSampleRate: 100 Hz
 ReferenceLocation: [0 0 0] [deg deg m]
 State: [22x1 double]
 StateCovariance: [22x22 double]

 Multiplicative Process Noise Variances
 GyroscopeNoise: [1e-09 1e-09 1e-09] (rad/s)²
 AccelerometerNoise: [0.0001 0.0001 0.0001] (m/s²)²
 GyroscopeBiasNoise: [1e-10 1e-10 1e-10] (rad/s)²
 AccelerometerBiasNoise: [0.0001 0.0001 0.0001] (m/s²)²

 Additive Process Noise Variances
 GeomagneticVectorNoise: [1e-06 1e-06 1e-06] uT²
 MagnetometerBiasNoise: [0.1 0.1 0.1] uT²

MARGGPSFuser uses an extended Kalman filter with the following methods:

• predict –– Update states using accelerometer and gyroscope data
• fusemag –– Correct states using magnetometer data
• fusegps –– Correct states using GPS data

Generally, accelerometer and gyroscope data is acquired at a higher rate than
magnetometer and GPS data. You can use nested loops to call predict, fusemag, and
fusegps at different rates.

accelData = [0 0 9.8];
gyroData = [0 0 0];
magData = [19.535 -5.109 47.930];
magCov = 0;
position = [0 0 0];
positionCov = 0;
velocity = rand(1,3);

 Determine Pose Using Inertial Sensors and GPS

5-3

velocityCov = 0;

predictDataSampleRate = 100;
fuseDataSampleRate = 2;
predictSamplesPerFuse = predictDataSampleRate/fuseDataSampleRate;

duration = 5;

for i = 1:duration*predictDataSampleRate

 for j = 1:predictSamplesPerFuse

 predict(FUSE,accelData,gyroData);

 end

 fusegps(FUSE,position,positionCov,velocity,velocityCov);
 fusemag(FUSE,magData,magCov);

end

At any time, you can call pose to return the current position and orientation estimates:

[position, orientation] = pose(FUSE)

position =

 1.0e-15 *

 -0.0000 -0.0555 0.1110

orientation =

 quaternion

 0.65342 + 0.56507i + 0.31113j + 0.39615k

For a complete example workflow using MARGGPSFuser, see “IMU and GPS Fusion for
Inertial Navigation”.

5 Pose

5-4

Fuse Accelerometer, Gyroscope, and GPS with Nonholonomic Constraints

Fusing accelerometer, gyroscope, and GPS data with nonholonomic constraints is a
common configuration for ground vehicle pose estimation. To fuse accelerometer,
gyroscope, and GPS data, create a NHConstrainedIMUGPSFuser object using the
insfilter function:

FUSE = insfilter('NonholonomicHeading',true,'Magnetometer',false)

FUSE =

 NHConstrainedIMUGPSFuser with properties:

 IMUSampleRate: 100 Hz
 ReferenceLocation: [0 0 0] [deg deg m]
 DecimationFactor: 2

 Extended Kalman Filter Values
 State: [16x1 double]
 StateCovariance: [16x16 double]

 Process Noise Variances
 GyroscopeNoise: [4.8e-06 4.8e-06 4.8e-06] (rad/s)²
 AccelerometerNoise: [0.048 0.048 0.048] (m/s²)²
 GyroscopeBiasNoise: [4e-14 4e-14 4e-14] (rad/s)²
 GyroscopeBiasDecayFactor: 0.999
 AccelerometerBiasNoise: [4e-14 4e-14 4e-14] (m/s²)²
 AccelerometerBiasDecayFactor: 0.9999

 Measurement Noise Variances
 ZeroVelocityConstraintNoise: 0.01 (m/s)²

NHConstrainedIMUGPSFuser uses an extended Kalman filter with the following
functions:

• predict –– Update states using accelerometer and gyroscope data
• fusegps –– Correct states using GPS data

Generally, accelerometer and gyroscope data is acquired at a higher rate than GPS data.
You can use nested loops to call predict and fusegps at different rates.

accelData = [0 0 9.8];
gyroData = [0 0 0];
position = [0 0 0];

 Determine Pose Using Inertial Sensors and GPS

5-5

positionCov = 0;
velocity = rand(1,3);
velocityCov = 0;

predictDataSampleRate = 100;
fuseDataSampleRate = 2;
predictSamplesPerFuse = predictDataSampleRate/fuseDataSampleRate;

duration = 5;

for i = 1:duration*predictDataSampleRate

 for j = 1:predictSamplesPerFuse

 predict(FUSE,accelData,gyroData);

 end

 fusegps(FUSE,position,positionCov,velocity,velocityCov);

end

At any time, you can call pose to return the current position and orientation estimates:

[position, orientation] = pose(FUSE)

position =

 1.0e-15 *

 -0.0000 -0.0555 0.1110

orientation =

 quaternion

 0.65342 + 0.56507i + 0.31113j + 0.39615k

For a complete example workflow using NHConstrainedIMUGPSFuser, see “Estimate
Position and Orientation of a Ground Vehicle”.

5 Pose

5-6

See Also
ahrsfilter | ecompass | imuSensor | imufilter | insfilter

More About
• “IMU and GPS Fusion for Inertial Navigation”
• “Estimate Position and Orientation of a Ground Vehicle”
• “Estimate Orientation and Height Using IMU, Magnetometer, and Altimeter”

 See Also

5-7

Tracking Scenario

6

Tracking Simulation Overview
You can build a complete tracking simulation using the functions and objects supplied in
this toolbox. The workflow for sensor fusion and tracking simulation consists of three (and
optionally four) components. These components are

1 Use the tracking scenario generator to create ground truth for all moving and
stationary radar platforms and all target platforms (planes, ships, cars, drones). The
trackingScenario class models the motion of all platforms in a global coordinate
system called scenario coordinates. These objects can represent ships, ground
vehicles, airframes, or any object that the radar detects. See “Orientation, Position,
and Coordinate Systems” on page 4-2 for a discussion of coordinate systems.

2 Optionally, simulate an inertial navigation system (INS) that provides radar sensor
platform position, velocity, and orientation relative to scenario coordinates.

3 Create models for each radar sensor with specifications and parameters using the
monostaticRadarSensor, radarSensor, or radarEmitter objects. Using target
platform pose and profile information, generate synthetic radar detections for each
radar-target combination. Methods belonging to trackingScenario retrieve the
pose and profile of any target platform. The trackingScenario generator does not
have knowledge of scenario coordinates. It knows the relative positions of the target
platforms with respect to the body platform of the radar. Therefore, the detector can
only generate detections relative to the radar location and orientation.

If there is an INS attached to a radar platform, then the radar can transform
detections to the scenario coordinate system. The INS allows multiple radars to
report detections in a common coordinate system.

4 Process radar detections with a multi-object tracker to associate detections to
existing tracks or create tracks. Multi-object tracks include trackerGNN and
trackerTOMHT. If there is no INS, the tracker can only generate tracks specific to
one radar. If an INS is present, the tracker can create tracks using measurements
from all radars.

The flow diagram shows the progression of information in a tracking simulation.

6 Tracking Scenario

6-2

 Tracking Simulation Overview

6-3

Creating Tracking Scenario
You can define a tracking simulation by using the trackingScenario object. This object
creates an empty scenario which you can then populate with platforms by calling the
platform method as many times as needed. A platform is an object (moving or
stationary) which can either be a sensor, a target, or other entity. After creating a
platform, you can use the platform path method to create paths that specify how the
platform moves. You construct paths by specifying three-dimensional waypoints and the
arrival time of the platform at the waypoint. path creates a three-dimensional piecewise-
clothoid curve that the platform follows. Then, run the simulation by calling the advance
method in a loop, or by calling the record method to run the simulation all at once. You
can set the simulation update interval using the SampleTime property.

When you create a platform, you set its properties or leave them to their default value.
You can set them all except for PlatformID. The orientation of a platform can be
specified in three equivalent ways. The Roll, Pitch, and Yaw, the
OrientationQuaternion, and OrientationMatrix can all be used to specify the
orientation of the platform. They must all be consistent. If you change one, the others are
automatically changed. If you specify more than one when creating a platform, the last
value entered is used. Platform properties and their default values are listed here.

6 Tracking Scenario

6-4

Platform Properties

PlatformID Scenario-defined platform ID.
Position Position of platform, specified as a real-

valued 1-by-3 vector representing the (x,y,z)
coordinates of the platform referenced to
the scenario coordinate system. The default
is [0,0,0]. Units are in meters.

Velocity Velocity of platform, specified as a real-
valued 1-by-3 vector representing the
(vx,vy,vz) velocity components referenced to
the scenario coordinate system. The default
is [0,0,0]. Units are in m/s.

Roll Roll helps define the orientation of the
platform body with respect to the scenario
coordinate system. Roll is the clockwise
rotation about the x body axes. If you do not
enter a value for roll, roll has the default
value of zero. You specify roll in degrees.

Pitch Pitch helps define the orientation of the
platform body with respect to the scenario
coordinate system. Pitch is the clockwise
rotation about the y body axes. If you do not
enter a value for pitch, pitch has the default
value of zero. You specify pitch in degrees.

Yaw Yaw helps define the orientation of the
platform body with respect to the scenario
coordinate system. Yaw is the clockwise
rotation about the z body axes. If you do not
enter a value for yaw, yaw has the default
value of zero. You specify yaw in degrees.

OrientationQuaternion The orientation of the body expressed in
quaternions.

 Creating Tracking Scenario

6-5

OrientationMatrix 3-by-3 matrix specifying the platforms body
coordinate vector with respect to scenario
coordinates. The columns represent the
directions of the carried x, y, and z
coordinates of the body.

AngularVelocity Angular velocity of platform, specified as a
real-valued 1-by-3 vector specifying the x,y,
and z components of the angular velocity
referenced to scenario coordinates. Units
are in degrees per second.

RCSPattern The radar cross-section of a platform
defines the response of the platform to
radar signals. The values are specified at
discrete azimuth and elevation angles.
These angles are referenced to the platform
body coordinates.

RCSAzimuthAngles Azimuth angles of the entries in
RCSPattern.

RCSAzimuthAngles Elevation angles of the entries in
RCSPattern.

ClassID User-specified platform classification ID.

The input to the path method is the set of name-value parameters listed here.

6 Tracking Scenario

6-6

Path Parameters

Waypoints An M-by-3 matrix containing the x, y, and z
positions in scenario coordinates through
which the platform must pass. Units are in
meters.

TimeOfArrival An M-element vector that specifies the time
at which the target crosses the
corresponding waypoint. Units are in
seconds.

Velocities An M-by-3 matrix containing the x, y, and z
components of the velocity in scenario
coordinates at the corresponding waypoint.
Units are in m/s.

Groundspeed An M-element vector that specifies the
ground speed at the corresponding
waypoint. Units are in m/s.

ClimbRate An M-element vector that specifies the rate
of climb (in the z dimension). Units are in
m/s.

Course An M-element vector that specifies to the
direction in which the target is moving in
the horizontal plane. Course is specified as
an angle measured from the x-axis to the y-
axis in the xy-plane.

Orientation An M-element vector of quaternions or a 3-
by-3-by-M matrix of rotation matrices at
each waypoint. These quantities correspond
to the rotational orientation of the platform
at that waypoint. If unspecified, the
platform yaw and pitch angles are aligned
in the direction of travel. Then, the
Banking parameter roll determines the roll
angle.

 Creating Tracking Scenario

6-7

Banking Specified as either 'flat' or
'frictionless'.

• If 'flat', the platform roll angle is
zero.

• If 'frictionless', the roll angle of
the platform is chosen to balance the
accelerations due to the trajectory path
and the acceleration due to gravity.

The banking Banking property cannot be
used together with Orientation. If you do
not specify Banking or Orientation, the
platform roll angle is zero.

At any time during the simulation, you can retrieve the current values of platform
properties using the platformPoses and platformProfiles methods of the
trackingScenario class. You can also use the targetPoses method of the Platform
class. Both the platformPoses and platformProfiles methods return properties of
all platforms with respect to scenario coordinates. The targetPoses method, while
similar, returns properties of other platforms with respect to a specified platform.

6 Tracking Scenario

6-8

Radar Detections

7

Simulate Radar Detections
The monostaticRadarSensor object simulates the detection of targets by a scanning
radar. You can use the object to model many properties of real radar sensors. For
example, you can

• simulate real detections with added random noise
• generate false alarms
• simulate mechanically scanned antennas and electronically scanned phased arrays
• specify angular, range, and range-rate resolution and limits

The radar sensor is assumed to be mounted on a platform and carried by the platform as
it maneuvers. A platform can carry multiple sensors. When you create a sensor, you
specify sensor positions and orientations with respect to the body coordinate system of a
platform. Each call to monostaticRadarSensor creates a sensor. The output of
monostaticRadarSensor generates the detection input to the multi-object tracker,
gnnTracker, or any simple one-object tracker such as trackingKF, trackingEKF,
trackingUKF, and trackingCKF.

The radar platform does not maintain any information about the radar sensors that are
mounted on it. (The sensor itself contains its position and orientation with respect to the
platform on which it is mounted but not which platform). You must create the association
between radar sensors and platforms. A way to do this association is to put the platform
and its associated sensors into a cell array. When you call a particular sensor, pass in the
platform-centric target pose and target profile information. The sensor converts this
information to sensor-centric poses. Target poses are outputs of trackingScenario
methods.

Create Radar Sensor
You can create a radar sensor using the monostaticRadarSensor object. Set the radar
properties using name-value pairs and then execute the simulator. For example,

radar1 = monostaticRadarSensor(...
 'UpdateRate',updaterate, ... % Hz
 'ReferenceRange', 111.0e3, ... % m
 'ReferenceRCS', 0.0, ... % dBsm
 'HasMechanicalScan',true, ...
 'MaxMechanicalScanRate',scanrate, ... % deg/s
 'HasElectronicScan',false, ...

7 Radar Detections

7-2

 'FieldOfView',fov, ... % [az;el] deg
 'HasElevation',false, ...
 'HasRangeRate',false, ...
 'AzimuthResolution',1.4, ... % deg
 'RangeResolution', 135.0) % m
dets = radar1(targets,simtime);

Convenience Syntaxes

There are several syntaxes of monostaticRadarSensor that make it easier to specify
the properties of commonly implemented radar scan modes. These syntaxes set
combinations of these properties: ScanMode, FieldOfView, MaxMechanicalScanRate,
MechanicalScanLimits, and ElectronicScanLimits.

• sensor = monostaticRadarSensor('Rotator') creates a
monostaticRadarSensor object that mechanically scans 360° in azimuth. Setting
HasElevation to true points the radar antenna towards the center of the elevation
field of view.

• sensor = monostaticRadarSensor('Sector') creates a
monostaticRadarSensor object that mechanically scans a 90° azimuth sector.
Setting HasElevation to true, points the radar antenna towards the center of the
elevation field of view. You can change the ScanMode to 'Electronic' to
electronically scan the same azimuth sector. In this case, the antenna is not
mechanically tilted in an electronic sector scan. Instead, beams are stacked
electronically to process the entire elevation spanned by the scan limits in a single
dwell.

• sensor = monostaticRadarSensor('Raster') returns a
monostaticRadarSensor object that mechanically scans a raster pattern spanning
90° in azimuth and 10° in elevation upwards from the horizon. You can change the
ScanMode property to 'Electronic' to perform an electronic raster scan in the
same volume.

• sensor = monostaticRadarSensor('No scanning') returns a
monostaticRadarSensor object that stares along the radar antenna boresight
direction. No mechanical or electronic scanning is performed.

You can set other radar properties when you use these syntaxes. For example,

sensor = monostaticRadarSensor('Raster','ScanMode','Electronic')

 Simulate Radar Detections

7-3

Radar Sensor Parameters

The properties specific to the monostaticRadarSensor object are listed here. For more
detailed information, type

help monostaticRadarSensor

at the command line.

Sensor location parameters.

7 Radar Detections

7-4

Sensor Location

SensorIndex A unique identifier for each sensor.
UpdateRate Rate at which sensor updates are

generated, specified as a positive scalar.
The reciprocal of this property must be an
integer multiple of the simulation time
interval. Updates requested between sensor
update intervals do not return detections.

MountingLocation Sensor (x,y,z) defining the offset of the
sensor origin from the origin of its platform.
The default value positions the sensor
origin at the platform origin.

Yaw Angle specifying the rotation around the
platform z-axis to align the platform
coordinate system with the sensor
coordinate system. Positive yaw angles
correspond to a clockwise rotation when
looking along the positive direction of the z-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

Pitch Angle specifying the rotation around the
platform y-axis to align the platform
coordinate system with the sensor
coordinate system. Positive pitch angles
correspond to a clockwise rotation when
looking along the positive direction of the y-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

 Simulate Radar Detections

7-5

Roll Angle specifying the rotation around the
platform x-axis to align the platform
coordinate system with the sensor
coordinate system. Positive pitch angles
correspond to a clockwise rotation when
looking along the positive direction of the x-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

DetectionCoordinates Specifies the coordinate system for
detections reported in the “Detections”
output struct. The coordinate system can
be one of:

• 'Scenario' –- detections are reported
in the scenario coordinate frame in
rectangular coordinates. This option can
only be selected when the sensor
HasINS property is set to true.

• 'Body' –- detections are reported in the
body frame of the sensor platform in
rectangular coordinates.

• 'Sensor rectangular' –- detections
are reported in the radar sensor
coordinate frame in rectangular
coordinates aligned with the sensor
frame axes.

• 'Sensor spherical' –- detections are
reported in the radar sensor coordinate
frame in spherical coordinates based on
the sensor frame axes.

Sensitivity parameters.

7 Radar Detections

7-6

Sensitivity Parameters

DetectionProbability Probability of detecting a target with radar
cross section, ReferenceRCS, at the range
of ReferenceRange.

FalseAlarmRate The probability of a false detection within
each resolution cell of the radar. Resolution
cells are determined from the
AzimuthResolution and
RangeResolution properties and when
enabled the ElevationResolution and
RangeRateResolution properties.

ReferenceRange Range at which a target with radar cross
section, ReferenceRCS, is detected with
the probability specified in
DetectionProbability.

ReferenceRCS The target radar cross section (RCS) in dB
at which the target is detected at the range
specified by ReferenceRange with a
detection probability specified by
DetectionProbability.

Sensor resolution and bias parameters.

 Simulate Radar Detections

7-7

Resolution Parameters

AzimuthResolution The radar azimuthal resolution defines the
minimum separation in azimuth angle at
which the radar can distinguish two
targets.

ElevationResolution The radar elevation resolution defines the
minimum separation in elevation angle at
which the radar can distinguish two
targets. This property only applies when the
HasElevation property is set to true.

RangeResolution The radar range resolution defines the
minimum separation in range at which the
radar can distinguish two targets.

RangeRateResolution The radar range rate resolution defines the
minimum separation in range rate at which
the radar can distinguish two targets. This
property only applies when the
HasRangeRate property is set to true.

AzimuthBiasFraction This property defines the azimuthal bias
component of the radar as a fraction of the
radar azimuthal resolution specified by the
AzimuthResolution property. This
property sets a lower bound on the
azimuthal accuracy of the radar.

ElevationBiasFraction This property defines the elevation bias
component of the radar as a fraction of the
radar elevation resolution specified by the
ElevationResolution property. This
property sets a lower bound on the
elevation accuracy of the radar. This
property only applies when the
HasElevation property is set to true.

7 Radar Detections

7-8

RangeBiasFraction This property defines the range bias
component of the radar as a fraction of the
radar range resolution specified by the
RangeResolution property. This property
sets a lower bound on the range accuracy
of the radar.

RangeRateBiasFraction This property defines the range rate bias
component of the radar as a fraction of the
radar range resolution specified by the
RangeRateResolution property. This
property sets a lower bound on the range
rate accuracy of the radar. This property
only applies when you set the
HasRangeRate property to true.

Enabling parameters.

 Simulate Radar Detections

7-9

Enabling Parameters

HasElevation This property allows the radar sensor to
scan in elevation and estimate elevation
from target detections.

HasRangeRate This property allows the radar sensor to
estimate range rate.

HasFalseAlarms This property allows the radar sensor to
generate false alarm detection reports.

HasRangeAmbiguities When true, the radar does not resolve
range ambiguities. When a radar sensor
cannot resolve range ambiguities, targets
at ranges beyond the
MaxUnambiguousRange property value are
wrapped into the interval [0
MaxUnambiguousRange]. When false,
targets are reported at their unwrapped
range.

HasRangeRateAmbiguites When true, the radar does not resolve
range rate ambiguities. When a radar
sensor cannot resolve range rate
ambiguities, targets at range rates above
the MaxUnambiguousRadialSpeed
property value are wrapped into the
interval [0
MaxUnambiguousRadialSpeed]. When
false, targets are reported at their
unwrapped range rates. This property only
applies when the HasRangeRate property
is set to true.

7 Radar Detections

7-10

HasNoise Specifies if noise is added to the sensor
measurements. Set this property to true to
report measurements with noise. Set this
property to false to report measurements
without noise. The reported measurement
noise covariance matrix contained in the
output objectDetection struct is always
computed regardless of the setting of this
property.

HasINS Set this property to true to enable an
optional input argument to pass the current
estimate of the sensor platform pose to the
sensor. This pose information is added to
the MeasurementParameters field of the
reported detections. Then, the tracking and
fusion algorithms can estimate the state of
the target detections in scenario
coordinates.

Scan parameters.

 Simulate Radar Detections

7-11

Scan Parameters

ScanMode This property specifies the scan mode used

by the radar as one of:

• 'No scanning' –- the radar does not
scan. The radar beam points along the
antenna boresight.

• 'Mechanical'–- the radar
mechanically scans between the azimuth
and elevation limits specified by the
MechanicalScanLimits property.

• 'Electronic'–- the radar
electronically scans between the
azimuth and elevation limits specified by
the ElectronicScanLimits property.

• 'Mechanical and electronic' –-
the radar mechanically scans the
antenna boresight between the
mechanical scan limits and
electronically scans beams relative to
the antenna boresight between the
electronic scan limits. The total field of
regard scanned in this mode is the
combination of the mechanical and
electronic scan limits.

In all scan modes except 'No scanning',
the scan proceeds at angular intervals
specified by the radar field of view specified
in FieldOfView.

7 Radar Detections

7-12

MaxMechanicalScanRate This property sets the magnitude of the
maximum mechanical scan rate of the
radar. When HasElevation is true, the
scan rate is a vector consisting of separate
azimuthal and elevation scan rates. When
HasElevation is false, the scan rate is a
scalar representing the azimuthal scan
rate. The radar sets its scan rate to step the
radar mechanical angle by the radar field of
regard. When the required scan rate
exceeds the maximum scan rate, the
maximum scan rate is used.

MechanicalScanLimits This property specifies the mechanical scan
limits of the radar with respect to its
mounted orientation. When HasElevation
is true, the limits are specified by
minimum and maximum azimuth and by
minimum and maximum elevation. When
HasElevation is false, limits are
specified by minimum and maximum
azimuth. Azimuthal scan limits cannot span
more than 360 degrees and elevation scan
limits must lie in the closed interval [-90
90].

ElectronicScanLimits This property specifies the electronic scan
limits of the radar with respect to the
current mechanical angle. When
HasElevation is true, the limits are
specified by minimum and maximum
azimuth and by minimum and maximum
elevation. When HasElevation is false,
limits are specified by minimum and
maximum azimuth. Both azimuthal and
elevation scan limits must lie in the closed
interval [-90 90].

 Simulate Radar Detections

7-13

FieldOfView This property specifies the sensor azimuthal
and elevation fields of view. The field of
view defines the total angular extent
observed by the sensor during a sensor
update. The field of view must lie in the
interval (0,180]. Targets outside of the
sensor angular field of view during a sensor
update are not detected.

Range and range rate parameters.

7 Radar Detections

7-14

Range and Range Rate Parameters

MaxUnambiguousRange This property specifies the range at which
the radar can unambiguously resolve the
range of a target. Targets detected at
ranges beyond the unambiguous range are
wrapped into the range interval [0
MaxUnambiguousRange]. This property
only applies to true target detections when
you set HasRangeAmbiguities property
to true.

This property also defines the maximum
range at which false alarms are generated.
This property only applies to false target
detections when you set HasFalseAlarms
property to true.

MaxUnambiguousRadialSpeed This property specifies the maximum
magnitude value of the radial speed at
which the radar can unambiguously resolve
the range rate of a target. Targets detected
at range rates whose magnitude is greater
than the maximum unambiguous radial
speed are wrapped into the range rate
interval [-MaxUnambiguousRadialSpeed
MaxUnambiguousRadialSpeed]. This
property only applies to true target
detections when you set both the
HasRangeRate and
HasRangeRateAmbiguities properties to
true.

This property also defines the range rate
interval over which false target detections
are generated. This property only applies to
false target detections when you set both
the HasFalseAlarms and HasRangeRate
properties to true.

 Simulate Radar Detections

7-15

Detector Input
Each sensor created by monostaticRadarSensor accepts as input an array of target
structures. This structure serves as the interface between the trackingScenario and
the sensors. You create the target struct from target poses and profile information
produced by trackingScenario or equivalent software.

The structure contains these fields.

Field Description
PlatformID Unique identifier for the platform, specified

as a scalar positive integer. This is a
required field with no default value.

ClassID User-defined integer used to classify the
type of target, specified as a nonnegative
integer. Zero is reserved for unclassified
platform types and is the default value.

Position Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
This is a required field with no default
value. Units are in meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
Units are in meters per second. The default
is [0 0 0].

Acceleration Acceleration of target in platform
coordinates specified as a 1-by-3 row
vector. Units are in meters per second-
squared. The default is [0 0 0].

Orientation Orientation of the target with respect to
platform coordinates, specified as a scalar
quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from
the platform coordinate system to the
current target body coordinate system.
Units are dimensionless. The default is
quaternion(1,0,0,0).

7 Radar Detections

7-16

Field Description
AngularVelocity Angular velocity of target in platform

coordinates, specified as a real-valued, 1-
by-3 vector. The magnitude of the vector
defines the angular speed. The direction
defines the axis of clockwise rotation. Units
are in degrees per second. The default is [0
0 0].

You can create a target pose structure by merging information from the platform
information output from the targetProfiles method of trackingScenario and target
pose information output from the targetPoses method on the platform carrying the
sensors. You can merge them by extracting for each PlatformID in the target poses
array, the profile information in platform profiles array for the same PlatformID.

The platform targetPoses method returns this structure for each target other than the
platform.

Target Poses

platformID
ClassID
Position
Velocity
Yaw
Pitch
Roll
AngularVelocity

The platformProfiles method returns this structure for all platforms in the scenario.

 Simulate Radar Detections

7-17

Platform Profiles

PlatformID
ClassID
RCSPattern
RCSAzimuthAngles
RCSElevationAngles

Radar Sensor Coordinate Systems
Detections consist of measurements of positions and velocities of targets and their
covariance matrices. Detections are constructed with respect to sensor coordinates but
can be output in one of several coordinates. Multiple coordinate frames are used to
represent the positions and orientations of the various platforms and sensors in a
scenario.

In a radar simulation, there is always a top-level global coordinate system which is usually
the North-East-Down (NED) Cartesian coordinate system defined by a tangent plane at
any point on the surface of the Earth. The trackingScenario object models the motion
of platforms in the global coordinate system. When you create a platform, you specify its
location and orientation relative to the global frame. These quantities define the body
axes of the platform. Each radar sensor is mounted on the body of a platform. When you
create a sensor, you specify its location and orientation with respect to the platform body
coordinates. These quantities define the sensor axes. The body and radar axes can change

7 Radar Detections

7-18

over time, however, global axes do not change.

Additional coordinate frames can be required. For example, often tracks are not
maintained in NED (or ENU) coordinates, as this coordinate frame changes based on the
latitude and longitude where it is defined. For scenarios that cover large areas (over 100
kilometers in each dimension), earth-centered earth-fixed (ECEF) can be a more
appropriate global frame to use.

 Simulate Radar Detections

7-19

A radar sensor generates measurements in spherical coordinates relative to its sensor
frame. However, the locations of the objects in the radar scenario are maintained in a top-
level frame. A radar sensor is mounted on a platform and will, by default, only be aware of
its position and orientation relative to the platform on which it is mounted. In other
words, the radar expects all target objects to be reported relative to the platform body
axes. The radar reports the required transformations (position and orientation) to relate
the reported detections to the platform body axes. These transformations are used by
consumers of the radar detections (e.g. trackers) to maintain tracks in the platform body
axes. Maintaining tracks in the platform body axes enables the fusion of measurement or
track information across multiple sensors mounted on the same platform.

If the platform is equipped with an inertial navigation system (INS) sensor, then the
location and orientation of the platform relative to the top-level frame can be determined.
This INS information can be used by the radar to reference all detections to scenario
coordinates.

INS
When you specify HasINS as true, you must pass in an INS struct into the step
method. This structure consists of the position, velocity, and orientation of the platform in
scenario coordinates. These parameters let you express target poses in scenario
coordinates by setting the DetectionCoordinates property.

Detections
Radar sensor detections are returned as a cell array of objectDetection objects. A
detection contains these properties.

7 Radar Detections

7-20

objectDetection Structure

Field Definition
Time Measurement time
Measurement Measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions

of any nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

Measurement and MeasurementNoise are reported in the coordinate system specified
by the DetectionCoordinates property of the monostaticRadarSensor are reported
in sensor Cartesian coordinates.

 Simulate Radar Detections

7-21

Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario' Coordinate Dependence on
HasRangeRate

HasRangeRate Coordinates
true [x;y;z;vx;vy;vz]
false [x;y;z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate Dependence on
HasRangeRate and HasElevation

HasRangeRa
te

HasElevati
on

Coordinate
s

true true [az;el;rng
;rr]

true false [az;rng;rr
]

false true [az;el;rng
]

false false [az;rng]

The MeasurementParameters field consists of an array of structs describing a
sequence of coordinate transformations from a child frame to a parent frame or the
inverse transformations (see “Frame Rotation” on page 4-3). The longest possible
sequence of transformations is: Sensor → Platform → Scenario. For example, if the
detections are reported in sensor spherical coordinates and HasINS is set to false, then
the sequence consists of one transformation from sensor to platform. If HasINS is true,
the sequence of transformations consists of two transformations – first to platform
coordinates then to scenario coordinates. Trivially, if the detections are reported in
platform rectangular coordinates and HasINS is set to false, the transformation consists
only of the identity.

Each struct takes the form:

7 Radar Detections

7-22

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used

to report measurements. When detections
are reported using a rectangular coordinate
system, Frame is set to 'rectangular'.
When detections are reported in spherical
coordinates, Frame is set 'spherical' for
the first struct.

OriginPosition Position offset of the origin of frame(k) from
the origin of frame(k+1) represented as a
3-by-1 vector.

OriginVelocity Velocity offset of the origin of frame(k) from
the origin of frame(k+1) represented as a
3-by-1 vector.

Orientation A 3-by-3 real-valued orthonormal frame
rotation matrix which rotates the axes of
frame(k+1) into alignment with the axes of
frame(k).

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate
frame. If false, Orientation performs a
frame rotation from the child's coordinate
frame to the parent's coordinate frame.

HasElevation A logical scalar indicating if the frame has
three-dimensional position. Only set to false
for the first struct when detections are
reported in spherical coordinates and
HasElevation is false, otherwise it is
true.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements.
true when HasRangeRate is enabled,
otherwise false.

 Simulate Radar Detections

7-23

ObjectAttributes

Attribute Definition
TargetIndex Identifier of the platform, PlatformID,

that generated the detection. For false
alarms, this value is negative.

SNR Detection signal-to-noise ratio in dB.

7 Radar Detections

7-24

Multi-Object Tracking

Tracking is the process of estimating the state of motion of an object based on
measurements taken off the object. For an object moving in space, the state usually
consists of position, velocity, and any other state parameters of objects at any given time.
A state is the necessary information needed to predict future states of the system given
the specified equations of motion. The estimates are derived from observations on the
objects and are updated as new observations are taken. Observations are made using one
or more sensors. Observations can only be used to update a track if it is likely that the
observation is that of the object having that track. Observations need to be either
associated with an existing track or used to create a new track. When several tracks are
present, there are several ways observations are associated with one and only one track.
The chosen track is based on the "closest" track to the observation.

8

Tracking and Tracking Filters

Multi-Object Tracking
You can use the multi-sensor, multi-target trackers, trackerGNN, and trackerTOMHT, to
track many targets simultaneously. Tracks are initiated and updated using sensor
detections of targets. There are several steps in the execution of the tracker when new
detections are made.

• The tracker tries to assign a detection to an existing track.
• The tracker creates a track for each detection it cannot assign. When starting the

tracker, all detections are used to create tracks.
• The tracker evaluates the status of each track. For new tracks, the status is judged to

be tentative until enough detections are made to confirm the track. For existing
tracks, newly assigned detections are used by the tracking filter to update the track
state. When a track has no new added detections, it is held in a coasted state until new
detections are assigned to it. If no new detections are added after a specified number
of updates, the track is deleted.

on the command line.

When tracking multiple objects, there are several things to consider

• Decide which type of tracking filter to use. The choice of tracking filter depends on the
expected dynamics of the object you want to track. The toolbox provides five Kalman
filters for this purpose: the Linear Kalman filter, trackingKF, the Extended Kalman
filter, trackingEKF, the Unscented Kalman filter, trackingUKF, the Cubature
Kalman filter, trackingCKF, and the Interacting Multiple Model (IMM) Kalman filter,
trackingIMM. The linear Kalman filter is used when the dynamics of the object follow
a linear model and the measurements are linear functions of the state vector. The
extended, unscented, and cubature Kalman filters are used when the dynamics are
nonlinear or the measurement model is nonlinear or both.

The toolbox provides multi-object trackers, trackerGNN. and trackerTOMHT, which
run the tracking filters and manage tracks. You can set the type of filter using an
initialization function such as initcvkf which creates a constant-velocity linear
Kalman filter from a single detection report. For any nonlinear Kalman filter, the
initialization lets you specify a state transition function and a measurement function.
For the extended Kalman filter, you can specify an optional state transition function

8 Multi-Object Tracking

8-2

Jacobian and an optional measurement function Jacobian. For example, initcaekf
creates a constant-acceleration extended Kalman filter.

• Choose which track assignment function to use. The assignment function determines
whether a new detection belongs to an existing track or not. The toolbox contains
three assignment algorithms, all of which use a cost matrix. Each column is assigned
to a row in a way that minimizes the total cost. The algorithms are described in the
help for each of these functions.

• assignmunkres uses a Munkres assignment algorithm to find an optimal solution
to the global nearest neighbor (GNN) assignment problem.

• assignauction uses a forward/reverse auction assignment algorithm to find a
suboptimal solution to the GNN assignment problem.

• assignjv uses a Jonker-Volgenant assignment algorithm to find another type of
optimal solution to the GNN assignment problem.

• Other assignment algorithms include assignkbest, assignkbestsd, assignsd,
and assignTOMHT.

• For the trackerTOMHT tracker, you can specify the conditions under which a track is
confirmed or deleted by setting the TrackLogic property. Two algorithms are
supported: 'History' and 'Score'.

• 'History' –- track confirmation and deletion are based on the number of times
the track has been assigned to a detection in the last several tracker updates.

• 'Score' –- track confirmation and deletion are based on a log-likelihood
computation. A high score means that the track is more likely to be valid. A low
score means that the track is more likely to be false.

Multi-Object Tracker Properties
trackerGNN Properties

The trackerGNN object is a multi-sensor, multi-object tracker that uses global nearest
neighbor association. Each detection can be assigned to only one track (single-hypothesis
tracker) which can also be a new track that the detection initiates. At each step of the
simulation, the tracker updates the track state. You can specify the behavior of the
tracker by setting the following properties.

 Tracking and Tracking Filters

8-3

trackerGNN Properties

FilterInitializationFcn A handle to a function that initializes a
tracking filter based on a single detection.
This function is called when a detection
cannot be assigned to an existing track. For
example, initcaekf creates an extended
Kalman filter for an accelerating target. All
tracks are initialized with the same type of
filter.

Assignment The name of the assignment algorithm. The
tracker provides three built-in algorithms:
'Munkres', 'Jonker-Volgenant', and
'Auction' algorithms. You can also create
your own custom assignment algorithm by
specifying 'Custom'.

CustomAssignmentFcn The name of the custom assignment
algorithm function. This property is
available on when the Assignment
property is set to 'Custom'.

AssignmentThreshold Specify the threshold that controls the
assignment of a detection to a track.
Detections can only be assigned to a track
if their normalized distance from the track
is less than the assignment threshold. Each
tracking filter has a different method of
computing the normalized distance.
Increase the threshold if there are
detections that can be assigned to tracks
but are not. Decrease the threshold if there
are detections that are erroneously
assigned to tracks.

8 Multi-Object Tracking

8-4

TrackLogic Specify the track confirmation logic
–-'History' or 'Score'. For descriptions
of these options, type

help trackHistoryLogic

or

help trackScoreLogic

at the command line.
ConfirmationThreshold Specify the threshold for track

confirmation. The threshold depends on the
setting for TrackLogic

• 'History' –- specify the confirmation
threshold as [M N]. If the track is
detected at least M times in the last N
updates, the track is confirmed.

• 'Score' –-- specify the confirmation
threshold as a single number. If the
score is greater than or equal to the
threshold, this track is confirmed.

.

 Tracking and Tracking Filters

8-5

DeletionThreshold Specify the threshold for track deletion.
The threshold depends on the setting of
TrackLogic

• 'History' –- specify the deletion
threshold as a pair of integers [P R]. A
track is deleted if it is not assigned to a
track at least P times in the last R
updates.

• 'Score' –-- specify the deletion
threshold as a single number. The track
is deleted if its score decreases by at
least this threshold from its maximum
track score.

.
DetectionProbability Specify the probability of detection as a

number in the range (0,1). The probability
of detection is used to calculate the track
score when initializing and updating a
track. This property is used only when
TrackLogic is set to 'Score'.

FalseAlarmRate Specify the rate of false detection as a
number in the range (0,1). The false alarm
rate is used to calculate the track score
when initializing and updating a track. This
property is used only when TrackLogic is
set to 'Score'.

Beta Specify the rate of new tracks per unit
volume as a positive number. This property
is used only when TrackLogic is set to
'Score'. The rate of new tracks is used in
calculating the track score during track
initialization. This property is used only
when TrackLogic is set to 'Score'.

8 Multi-Object Tracking

8-6

Volume Specify the volume of the sensor
measurement bin as a positive scalar. For
example, a radar sensor that produces a 4-
D measurement of azimuth, elevation,
range, and range-rate creates a 4-D volume.
The volume is a product of the radar
angular beamwidth, the range bin width,
and the range-rate bin width. The volume is
used in calculating the track score when
initializing and updating a track. This
property is used only when TrackLogic is
set to 'Score'.

MaxNumTracks Specify the maximum number of tracks the
tracker can maintain.

MaxNumSensors Specify the maximum number of sensors
sending detections to the tracker as a
positive integer. This number must be
greater than or equal to the largest
SensorIndex value used in the
objectDetection input to the step
method. This property determines how
many sets of ObjectAttributes each
track can have.

HasDetectableTrackIDsInput Set this property to true if you want to
provide a list of detectable track IDs as
input to the step method. This list contains
all tracks that the sensors expect to detect
and, optionally, the probability of detection
for each track ID.

HasCostMatrixInput Set this property to true if you want to
provide an assignment cost matrix as input
to the step method.

trackerGNN Input

The input to the trackerGNN consists of a list of detections, the update time, cost matrix,
and other data. Detections are specified as a cell array of objectDetection objects (see
“Detections”). The input arguments are listed here.

 Tracking and Tracking Filters

8-7

trackerGNN Input

tracker A trackerGNN object.
detections Cell array of objectDetection objects

(see “Detections”).
time Time to which all the tracks are to be

updated and predicted. The time at this
execution step must be greater than the
value in the previous call.

costmatrix Cost matrix for assigning detections to
tracks. A real T-by-D matrix, where T is the
number of tracks listed in the allTracks
argument returned from the previous call to
step. D is the number of detections that
are input in the current call. A larger cost
matrix entry means a lower likelihood of
assignment.

detectableTrackIDs IDs of tracks that the sensors expect to
detect, specified as an M-by-1 or M-by-2
matrix. The first column consists of track
IDs, as reported in the TrackID field of the
tracker output. The second column is
optional and allows you to add the
detection probability for each track.

trackerGNN Output

The output of the tracker can consist of up to three struct arrays with track state
information. You can retrieve just the confirmed tracks, the confirmed and tentative
tracks, or these tracks plus a combined list of all tracks.

confirmedTracks = step(...)

[confirmedTracks, tentativeTracks] = step(...)

[confirmedTracks, tentativeTracks, allTracks] = step(...)

The fields contained in the struct are:

8 Multi-Object Tracking

8-8

trackerGNN Output struct

TrackID Unique integer that identifies the track.
UpdateTime Time to which the track is updated.
Age Number of updates since track

initialization.
State State vector at update time.
StateCovariance State covariance matrix at update time.
IsConfirmed True if the track is confirmed.
TrackLogic The track logic used in confirming the track

– 'History' or 'Score'.
TrackLogicState The current state of the track logic.

• For 'History' track logic, a 1-by-Q
logical array, where Q is the larger of N
specified in the confirmation threshold
property, ConfirmationThreshold,
and R specified in the deletion threshold
property, DeletionThreshold.

• For 'Score' track logic, a 1-by-2
numerical array in the form:
[currentScore, maxScore].

IsCoasted True if the track has been updated without
a detection. In this case, tracks are
predicted to the current time.

ObjectClassID An integer value representing the target
classification. Zero is reserved for an
"unknown" class.

ObjectAttributes A cell array of cells. Each cell captures the
object attributes reported by the
corresponding sensor.

 Tracking and Tracking Filters

8-9

